DIAGONAL COINVARIANTS OF Zm ≀ Sn

نویسنده

  • Richard Vale
چکیده

We construct a quotient ring of the ring of diagonal coinvariants of the complex reflection group W = G(m, 1, n) and determine its graded character. This generalises a result of Gordon for Coxeter groups. The proof uses a study of category O for the rational Cherednik algebra of W , including a shift isomorphism which is proved in Appendix 1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DECOMPOSITION OF THE DIAGONAL ACTION OF Sn ON THE COINVARIANT SPACE OF Sn × Sn

The purpose of this paper is to give an explicit description of the irreducible decomposition of the multigraded Sn-module of coinvariants of Sn×Sn. Many of the results presented can be extended to S n , and analogous questions for other finite reflection group.

متن کامل

Combinatorics of Tesler matrices in the theory of parking functions and diagonal harmonics

In [J. Haglund, A polynomial expression for the Hilbert series of the quotient ring of diagonal coinvariants, Adv. Math. 227 (2011) 2092-2106], the study of the Hilbert series of diagonal coinvariants is linked to combinatorial objects called Tesler matrices. In this paper we use operator identities from Macdonald polynomial theory to give new and short proofs of some of these results. We also ...

متن کامل

Orbits for the adjoint coaction on quantum matrices

Conjugation coactions of the quantum general linear group on the algebra of quantum matrices have been introduced in an earlier paper and the coinvariants have been determined. In this paper the notion of orbit is considered via co-orbit maps associated with C-points of the space of quantum matrices, mapping the coordinate ring of quantum matrices into the coordinate ring of the quantum general...

متن کامل

SPRINGER’S THEOREM FOR MODULAR COINVARIANTS OF GLn(Fq)

Two related results are proven in the modular invariant theory of GLn(Fq ). The first is a finite field analogue of a result of Springer on coinvariants of the symmetric group Sn acting on C[x1, . . . , xn]. It asserts that the following two Fqn [GLn(Fq )×F × q ]modules have the same composition factors: • the coinvariant algebra for GLn(Fq ) acting on Fqn [x1, . . . , xn], in which GLn(Fq ) ac...

متن کامل

Diagonal Coinvariants and Double Affine Hecke Algebras

It was conjectured by Haiman [H] that the space of diagonal coinvariants for a root system R of rank n has a ”natural” quotient of dimension (1 + h) for the Coxeter number h. This space is the quotient C[x, y]/(C[x, y]C[x, y]o ) for the algebra of polynomials C[x, y] with the diagonal action of the Weyl group on x ∈ C ∋ y and the ideal C[x, y]o ⊂ C[x, y] of the W -invariant polynomials without ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005